

UNIVERSITY OF PATRAS SCHOOL OF HEALTH SCIENCES DEPARTMENT OF PHARMACY POSTGRADUATE PROGRAM: DRUG DESIGN AND DEVELOPMENT

COURSE TITLE: NANOMEDICINES AND SPECIAL SYSTEMS FOR ADMINISTRATION AND/OR TARGETING OF DRUGS/IMAGING AGENTS CODE: DPHA_B01

NATURAL PRODUCTS IN DRUG DISCOVERY COURSE OUTLINE

1. GENERAL

SCHOOL	HEALTH SCIENCES		
ACADEMIC UNIT	DEPARTMENT OF PHARMACY		
PARTICIPATING INSTITUTIONS	-		
TITLE of POSTGRADUATE PROGRAM	DRUG DESIGN AND DEVELOPMENT		
LEVEL	POSTGRADUATE		
COURSE CODE	DPHA_B01	SEMESTER	B'
COURSE TITLE	NANOMEDICINES AND SPECIAL SYSTEMS FOR ADMINISTRATION AND/OR TARGETING OF DRUGS/IMAGING AGENTS		
INDEPENDENT TEACHING ACTIVITIE		WEEKLY TEACHING HOURS	CREDITS
Courses			
	Courses	3	5
COURSE TYPE	Courses Scientific Area (Pharma Skills Development		5
COURSE TYPE PREREQUISITE COURSES	Scientific Area (Pharma		5
	Scientific Area (Pharma Skills Development	ceutical Technology),	5
PREREQUISITE COURSES	Scientific Area (Pharma Skills Development None	ceutical Technology),	5

2. LEARNING OUTCOMES

Learning Outcomes

This course aims to acquire knowledge, skills and competences related to level 7 of the European Qualifications Framework for Lifelong Learning

Upon successful completion of the course, students:

- 1. They will have understood the strategy and rationale of nanotechnology applications in the design and development of advanced drug delivery systems
- 2. They will have become familiar with the techniques and methodology governing the development of nanomedicines and diagnostics
- 3. Development of the skills required for oral and written presentation and argumentation, based on experimental data.

General Competences

- Search, analysis and synthesis of data and information, using the necessary technologies
- Self-study
- Team work
- Working in interdisciplinary environment
- Working in the international environment
- Search, analyze and combine data towards making useful conclusions
- Understand basic concepts of formulation development

3. SYLLABUS

LECTURES

- Introduction Basics.
- Design of Systems for Controlled Drug Delivery Pharmacokinetic/Pharmacodynamic basis of controlled delivery Mechanisms of Controlled Release.
- Detection/Targeting Methodologies Absorption barrier penetration Biodegradation bio-compatibility - hematocompatibility of nanoforms (Limitations and control methods).
- Systems for diagnosis and for simultaneous treatment or monitoring of the therapeutic effect monitoring - Systems for gene therapy (Structure, Ingredients, Preparation, Characterization, in vitro/in vivo evaluation).
- Other special administration systems: Solid forms for per os administration Transdermal Administration Systems Emulsions-microemulsions, gels (in situ formed) Osmotically regulated systems (Ingredients, Preparation, Characterization, in vitro/in vivo evaluation).
- Liposomes and hybrid liposomes (Ingredients-Structure, Preparation, in vitro/in vivo evaluation Applications).
- Nanoparticles Nanocapsules (Ingredients-Structure, Preparation, Physicochemical characterization, Applications).
- The Role of polymers in innovative forms of drug administration.
- Cyclodextrins (Structure, Preparation of complexes, Physicochemical characterization, Applications).
- Lipid Nanocarriers and Nanogels.
- Nano cosmetics.
- Physicochemical Characterization of nanocarriers.
- Methods of studying the interaction of nanocarriers with tissues.

GUIDED WORK

• Analysis and presentation of a relevant scientific paper of recent literature

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face, Essays, Exercises Self-study
USE of INFORMATION and	Use of E-class platform to share archives and lectures, to communi-
COMMUNICATIONS TECHNOLOGY	cate with students and to organize the lecture schedule.

	Activity Lectures Directed Exercises Self Study Course Total (25 hours of work-load per ECTS credit)	Semester Workload 39 13 73 125
STUDENT PERFORMANCE EVALUATION	Language of Evaluation: Greek / English Written exams; MCQ; Essays and exercises Final Grade: performance in written exam on th (70%), performance in case study essay: 30%.	e theoretical courses

5. RECOMMENDED BIBLIOGRAPHY

Related Academic Journals:

Pharmaceutical Manufacturing Handbook : Production and Processes Shayne Cox Gad

Methods in Molecular Biology: Liposomes

Related Scientific Journals

- Nano Letters
- ACS Nano
- Nature Nanotechnology
- Nanomedicine
- Biomaterials
- Journal of Pharmaceutical Sciences
- International Journal of Pharmaceutics
- Pharmaceutical Research
- Small
- European journal of Pharmaceutics and Biopharmaceutics
- Journal of Pharmaceutical Sciences
- J. Contr. Release
- Pharmaceutics