DEPARTMENT OF PHARMACY

UNIVERSITY OF PATRAS
SCHOOL OF HEALTH SCIENCES
DEPARTMENT OF PHARMACY

POSTGRADUATE PROGRAM: DRUG DESIGN AND DEVELOPMENT

**COURSE TITLE: APPLIED PHARMACEUTICAL ANALYSIS** 

AND CHARACTERISATION TECHNIQUES OF FINAL PRODUCTS

CODE: DPHA\_B03

# STATISTICS AND QUALITY MANAGEMENT IN PHARMACY COURSE OUTLINE

# 1. GENERAL

| SCHOOL                                                     | HEALTH SCIENCES                                                                   |                       |           |
|------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|-----------|
| ACADEMIC UNIT                                              | DEPARTMENT OF PHARMACY                                                            |                       |           |
| PARTICIPATING INSTITUTIONS                                 | -                                                                                 |                       |           |
| TITLE of POSTGRADUATE PROGRAM                              | DRUG DESIGN AND DEVELOPMENT                                                       |                       |           |
| LEVEL                                                      | POSTGRADUATE                                                                      |                       |           |
| COURSE CODE                                                | DPHA_B03                                                                          | SEMESTER              | B'        |
| COURSE TITLE                                               | APPLIED PHARMACEUTICAL ANALYSIS AND CHARACTERISATION TECHNIQUES OF FINAL PRODUCTS |                       |           |
| INDEPENDENT TEACHING ACTIVITIES                            |                                                                                   |                       |           |
| INDEPENDENT                                                | TEACHING ACTIVITIES                                                               | WEEKLY TEACHING HOURS | CREDITS   |
| INDEPENDENT                                                | TEACHING ACTIVITIES  Courses                                                      |                       | CREDITS 5 |
| INDEPENDENT  COURSE TYPE                                   | Courses                                                                           | TEACHING HOURS        | 01100110  |
|                                                            | Courses                                                                           | TEACHING HOURS        | 01100110  |
| COURSE TYPE                                                | Courses Skills Development                                                        | TEACHING HOURS        | 01100110  |
| COURSE TYPE  PREREQUISITE COURSES  LANGUAGE of INSTRUCTION | Courses Skills Development -                                                      | TEACHING HOURS        | 01100110  |

## 2. LEARNING OUTCOMES

## **Learning Outcomes**

The student is introduced to the Spectroscopic techniques for characterization of pharmaceutical formulation: (NIR, IR-ATR, Raman, X-ray diffraction, microscopy (optical and scanning electron), Elemental Analysis Techniques (XRF, AAS, AES, ICP-MS, ICP-OES), Diffraction, Polarimetry, Particle Size Characterization Techniques, Thermal Analysis Techniques (TGA, DTA, DSC). Porosity measurement (BET).

Specifically, upon successful completion of the course, the graduate student is expected to have developed level 7 skills in the following topics:

Ability to select and use the Spectroscopic technique for the identification and quantification of the individual components of a liquid or solid sample of a pharmaceutical formulation.

# **General Competences**

- Working independently
- Team work
- · Search for, analysis and synthesis of data and information, with the use of the necessary technology

#### 3. SYLLABUS

- 1. Validation of analytical methods. The concept of traceability. Good practice rules (GLP, GMP) and quality procedures in the pharmaceutical industry. Stability control of active substances and excipients
- 2. Techniques for the determination of physical characteristics of substances:
- 3. Diffractometry- Principles, instrumentation, applications in Pharmaceutical Analysis,
- 4. Polarimetry- Principles, instrumentation, applications in Pharmaceutical Analysis,
- 5. Particle size characterization Principles, instrumentation, applications in Pharmaceutical Analysis.
- 6. Methods of thermal analysis (TGA, DTA, DSC).
- 7. Measurement of porosity (BET).
- 8. Microscopy (Optical and scanning electron).
- 9. Polymorphism of active substances in formulations: NIR, IR-ATR, Raman, X-ray diffraction, Microscopy (optical and electron). Examples.
- 10. Elemental analysis (XRF, AAS, AES, ICP-MS, ICP-OES)

#### 4. TEACHING and LEARNING METHODS - EVALUATION

| DELIVERY                                         | Physical presence of students/teachers in a lecture hall (face-to-face) |                   |  |
|--------------------------------------------------|-------------------------------------------------------------------------|-------------------|--|
| USE of INFORMATION and COMMUNICATIONS TECHNOLOGY | Learning process support through the e-class platform                   |                   |  |
| TEACHING METHODS                                 | Activity                                                                | Semester Workload |  |
|                                                  | Interactive teaching Study and analysis of bibliography                 | 39<br>47          |  |
|                                                  |                                                                         | 39                |  |
|                                                  | Project                                                                 | 39                |  |
|                                                  | Course Total                                                            |                   |  |
|                                                  | (25 hours of work-load per ECTS credit)                                 | 125               |  |
| STUDENT PERFORMANCE                              | 1. Written final examination (80%) including                            |                   |  |
| EVALUATION                                       | - Short development questions                                           |                   |  |
|                                                  | - Questions of a critical nature                                        |                   |  |
|                                                  | - Problem solving                                                       |                   |  |
|                                                  | 2. Assignment - Presentation of an analytical problem from the in-      |                   |  |
|                                                  | ternational literature (20%)                                            |                   |  |

### 5. RECOMMENDED BIBLIOGRAPHY

## **Related Bibliography**

- 1. ΕΝΟΡΓΑΝΗ ΑΝΑΛΎΣΗ, ΘΕΜΙΣΤΟΚΛΉΣ Π. ΧΑΤΖΗΪ́ΩΑΝΝΟΥ, ΜΙΧΑΗΛ Α. ΚΟΥΠΠΑΡΗΣ , 2014
- 2. ΕΝΟΡΓΑΝΗ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ, Ι. ΠΑΠΑΔΟΓΙΑΝΝΗΣ-Β. ΣΑΜΑΝΙΔΟΥ, 2η Έκδοση, Θεσσαλονίκη, 2011.
- 3. Φαρμακευτική ανάλυση, D.G. WATSON, , Επιμέλεια Ελληνικής Έκδοσης: Μ. Κουππάρης, Εκδόσεις Παρισιάνου, 2011.
- 4. ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΑΝΑΛΥΤΙΚΗΣ ΧΗΜΕΙΑΣ, SKOOG, D. A. Skoog, D. M. West, F. James Holler, S. R. Crouch, Επιμέλεια Ελληνικής 'Εκδοσης: Μ. Ι. Καραγιάννης, Κ. Η. Ευσταθίου, Εκδόσεις Κωσταράκη, 2016