

UNIVERSITY OF PATRAS SCHOOL OF HEALTH SCIENCES DEPARTMENT OF PHARMACY POSTGRADUATE PROGRAM: DRUG DESIGN AND DEVELOPMENT

> COURSE TITLE: APPLIED BIOTECHNOLOGY AND BIOINFORMATICS CODE: DPHA_C02

APPLIED BIOTECHNOLOGY AND BIOINFORMATICS COURSE OUTLINE

1. GENERAL

SCHOOL	HEALTH SCIENCES		
ACADEMIC UNIT	DEPARTMENT OF PHARMACY		
PARTICIPATING INSTITUTIONS	-		
TITLE of POSTGRADUATE PROGRAM	DRUG DESIGN AND DEVELOPMENT		
LEVEL	POSTGRADUATE		
COURSE CODE	DPHA_C02	SEMESTER	B'
COURSE TITLE	APPLIED BIOTECHNOLOGY AND BIOINFORMATICS		
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	CREDITS
Courses			
	Courses	3	5
COURSE TYPE	Courses Specialized Background chemistry, Cellular Biol Development	d, Επιστημονικών Περι	οχών (Chemistry, Bio-
COURSE TYPE PREREQUISITE COURSES	Specialized Background chemistry, Cellular Biol	d, Επιστημονικών Περι	οχών (Chemistry, Bio-
	Specialized Background chemistry, Cellular Biol Development	d, Επιστημονικών Περι	οχών (Chemistry, Bio-
PREREQUISITE COURSES	Specialized Background chemistry, Cellular Biol Development None	d, Επιστημονικών Περι	οχών (Chemistry, Bio-

2. LEARNING OUTCOMES

Learning Outcomes

This course aims to acquire knowledge, skills and abilities related to level 7 of the European Qualifications Framework for Lifelong Learning.

Upon successful completion of the course, students:

- 1. will be able to understand and apply modern biotechnological methods for the study of pharmaceutical molecules and biomolecules
- 2. will be able to understand and apply modern bioinformatics methods to study the sequence, structure and function of biomolecules
- 3. They will have familiarized themselves with the basic concepts of modern biotechnology and bioinformatics, through the study of publications and modern literature

General Competences

- Search for, analysis and synthesis of data and information, with the use of the necessary technologies
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Working in an international environment
- Working in an interdisciplinary environment
- Criticism and self-criticism
- Production of free, creative and inductive thinking

3. SYLLABUS

LECTURES

- Transgenic Technology.
- Genetic targeting.
- Genetic databases.
- Big data analysis.
- Protein structure analysis and prediction.
- Analysis of nucleotide and amino acid sequences.
- Sequencing.
- Access and extracting information from databases.

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face	
USE of INFORMATION and COMMUNICATIONS TECHNOLOGY	Extensive use of E-class to share archives and lectures, to communi- cate with students and to organize the lecture schedule.	
TEACHING METHODS	Activity	Semester Workload
	Lectures	39
	Analysis of scientific literature	39
	Study assignement	34
	Writing assignment / assignments	13
	Course Total (25 hours of work-load per ECTS credit)	125

	Language of Evaluation: Greek / English
EVALUATION	 Written exams Multiple choice questionnaires, Short answer questions, Open ended questions (40% of final grade)
	 Public Presentation Evaluation of individual presentations (taking into account the individual observations of the group of postgraduate students and teachers (60% of final grade)

5. RECOMMENDED BIBLIOGRAPHY

Suggested Bibliography:

- Recombinant DNA, James D. Watson, Jan A. Witkowski, Richard M. Myers, Amy A. Caudy
- Βιοχημεία, Stryer
- Βιοπληροφορική, Μπάγκος Παντελεήμων, ΚΑΛΛΙΠΟΣ

Related Academic Journals:

Cell, Nature, Nature Biotechnology, Bioinformatics, Journal of Molecular Biology, PLoS One, PloS One Biotechnology,