

SCHOOL OF HEALTH SCIENCES

UNIVERSITY OF PATRAS SCHOOL OF HEALTH SCIENCES DEPARTMENT OF PHARMACY UNDERGRADUATE STUDIES' COURSES

COURSE DESCRIPTION: APPLIED MATHEMATICS COURSE CODE: PHA-A13-NEW

APPLIED MATHEMATICS COURSE DESCRIPTION

1. GENERAL

SCHOOL	HEALTH SCIENCES			
SEPARTMENT	PHARMACHY			
LEVEL OF COURSE	UNDERGRADUATE			
COURSE CODE	PHA-A13-NEW	-A13-NEW SEMESTER OF STUDIES		1st
COURSE TITLE	APPLIED MATHEMATICS			
INDEPENDENT TEACHING ACTIVITIES			TEACHING HOURS PER WEEK	ECTS CREDITS
Lectures			3	-
Tutorials			1	5
COURSE TYPE	General Background Course			
PREREQUISITE COURSES:	-			
TEACHING AND ASSESSMENT LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Not offered			
COURSE WEBPAGE (URL)	http://www.pharmacy.upatras.gr/images/DS/PHA-A13-EN.pdf			

2. LEARNING OUTCOMES

Learning outcomes

With this course a student will become familiar with several mathematical concepts such as derivatives (total and partial) and integrals (simple, multiple and improper). He/she will get some basic knowledge of Ordinary Differential Equations (ODEs). Besides, a student realizes that phenomena which are not deterministically predictable obey probabilistic models (distributions). He/she acquires the ability to construct (interpret) appropriate graphs and calculate statistics (such as sample mean and variance) in an effort, using the sample observations, to present statistical characteristics of a random phenomenon.

On successful completion of the course a student will be able to use the above mentioned mathematical concepts to solve problems, to locate critical points of two-variable functions, to solve simple optimization problems, to solve simple ODEs problems. Moreover, he/she will be able to: understand the notions of sample and the population distribution; demonstrate ability to select a distributional model for a random phenomenon.

General Abilities

- Adaptation to new situations
- Decision making
- Autonomous Work

- Work in an interdisciplinary environment
- Exercise of criticism and self-criticism
- Promotion of free, creative and inductive thinking

3. COURSE CONTENT

- Special functions: logarithmic, exponential, trigonometric and inverse trigonometric functions
- Improper integrals of the first and the second kind
- Functions in many variables: basic concepts, partial derivatives, double and triple integrals. Critical points and optimization methods
- Linear Algebra: Tables, determinants, systems of linear equations
- Ordinary Differential Equations (ODEs): Basic concepts and definitions, separable ODEs, exact ODEs, linear ODEs of first order, linear ODEs of second order with constant coefficients homogeneous and non-homogeneous
- Descriptive Statistics: graphical methods of data presentation, location and dispersion measures, sampling methods
- Elements of Probability Theory: definition of probability, events, conditional probability, independence, total probability theorem, Bayes' rule
- Random variables (discrete, continuous), commonly used distributions (binomial, hypergeometric, Poisson, exponential, normal), moments, central limit theorem

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD	Lectures (face to face)		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES	 In-class slides Post-class support of the course via the web page of the Department of Mathematics 		
TEACHING ORGANIZATION	<i>Teaching Method</i> Lectures	<i>Semester Workload</i> 39	
	Tutorials	13	
	Solving suggested exercises	35	
	Hours of personal study by the student	35	
	Final examination	3	
	<i>Total number of hours for the Course</i> (25 hours of work-load per ECTS credit)	150	

STUDENT ASSESSMENT	Assessment Language: Greek Assessment Language for Erasmus students: English
	Assessment methods Final exams (100%) that includes ✔ Exercises
	Minimum passing grade: 5 Maximum passing grade: 10

5. RECOMMENDED LITERATURE

(in Greek)

- FINNEY R.L., WEIR M.D., GIORDANO F.R. ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ, 2012
- Murray R. Spiegel. Ανώτερα Μαθηματικά, ΕΣΠΙ ΕΚΔΟΤΙΚΗ Εταιρεία Περιορισμένης Ευθύνης, 1982.
- Χαράλαμπος Γ. Ζαγούρας, Δημήτριος Ν. Γεωργίου. ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ, ΕΚΔΟΣΕΙΣ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΜΟΝ. ΕΠΕ, 2009.