DEPARTMENT OF PHARMACY

UNIVERSITY OF PATRAS
SCHOOL OF HEALTH SCIENCES
DEPARTMENT OF PHARMACY
UNDERGRADUATE STUDIES' COURSES

COURSE DESCRIPTION: SPECTROSCOPY

COURSE CODE: PHA-C14-NEW

SPECTROSCOPY COURSE DESCRIPTION

1. GENERAL

SCHOOL	HEALTH SCIENCES			
SEPARTMENT	PHARMACY			
LEVEL OF COURSE	UNDERGRADUATE			
COURSE CODE	PHA-C14-NEW SEMESTER OF STUDIES 5th		5th	
COURSE TITLE	SPECTROSCOPY			
INDEPENDENT TEACHING ACTIVITIES		TEACHING HOURS PER WEEK	ECTS CREDITS	
Lectures		4	7	
Laboratory practice		3	,	
COURSE TYPE	Scientific Field course			
PREREQUISITE COURSES:	-			
TEACHING AND ASSESSMENT LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Not offered			
COURSE WEBPAGE (URL)	http://www.pharmacy.upatras.gr/images/DS/PHA-C14-EN.pdf			

2. LEARNING OUTCOMES

Learning Outcomes

Student familiarizes himself with the spectroscopic / spectrometric techniques (Raman, IR, UV / Vis, fluorescence spectrometry, NMR, MS, XRD) with emphasis on the analytical techniques that are mentioned in the Pharmacopoeia and used by pharmaceutical; companies for quality control of raw material, excipients and formulations.

Specifically upon successful completion of the course the student is expected to have developed level 6 skills in the following subjects:

Ability to choose and use the appropriate Spectroscopic / spectrometric technique for identification and quantification of liquid and/or solid samples with emphasis on pharmaceutical products and samples of biological origin.

General Abilities

- 1. Data analysis using the necessary technologies.
- 2. Independent work.
- 3. Group work.

3. COURSE CONTENT

- 1. Introduction to spectroscopic techniques for analysis
- 2. UV/Vis spectrometry
- 3. IR and Raman spectrometry
- 4. fluorescence spectrometry
- 5. Elemental Analysis techniques (Atomic Absorption and Emission spectrometry, ICP-MS, ICP-OES, XRF)
- 6. Nuclear magnetic resonance spectroscopy
- 7. Mass spectrometry: Ionization methods, explanation of mass spectra, connection to chromatography, detectors. Applications to pharmaceutical analysis
- 8. X-ray diffraction

Laboratory Exercises

- UV/Vis Spectrometry: Quantitative determination of active ingredients in pharmaceutical formulations: a) «acetylsalicylic acid» in «Aspirin®» tablets; b) «paracetamol» in «Depon®» tablets, c) «paracetamol» and «caffeine» in «Panadol Extra®» tablets, d) «caffeine» in «Caffeine Aguettant®» ampoules.
- Refractometry: a) Determination of sugar content in «Depon®» syrup, b) Determination of the refractive index of the active substance «Glucosamine Sulphate Sodium»
- Fluorimetry: Quantitative determination of the active ingredient «acetylsalicylic acid» in «Aspirin®» tablets
- Infrared spectrometry: Quantitative determination of the active ingredient «acetylsalicylic acid» in «Aspirin®» tablets
- (Proton) Nuclear Magnetic Resonance ¹H-NMR: ¹H-NMR spectrum acquisition for the active substance «paracetamol».

4. TEACHING AND LEARNING METHODS - ASSESSMENT

Teaching method	In a class			
Use of information and communication technologies	Learning using e-class platform, Software for data acquisition, software for data processing			
Teaching organization	Teaching Method Lectures Practical Lab Exercises Experimental data processing (Department's computer room)	Semester Workload 52 26		
	Data Report Autonomous study Total number of hours for the Course (25 hours of work-load per ECTS credit)	20 52 176		
STUDENT ASSESSMENT	I. Final written examination (50%) including: - Questions of brief development - Questions for judgement - Problem solving.			

- II. Laboratory exercises (50%) including.
 - Lab experiments
 - Group report on each experiment (data processing, discussion of results)
 - Written exam

5. RECOMMENDED LITERATURE

Suggested Books:

- 1. Instrumental Analysis, Th. P. Chatzioannou and M. Koupparis , Athens 2014 (in Greek)
- 2. Instrumental Chemical Analysis, I .Papadogiannis and B. Samanidou, 2nd Ed. Thessaloniki, 2011 (in Greek).
- 3. Pharmaceutical Analysis, D.G. WATSON, Parisianos, 2011 (Translated in Greek by M. Koupparis et. al).
- 4. Principles of Instrumental Analysis, D. A. Skoog, F. James Holler, S. R. Crouch, Kostarakis, 2016 (Translated in Greek by M. Karagiannis and K. Efstathiou).