

SCHOOL OF HEALTH SCIENCES

UNIVERSITY OF PATRAS SCHOOL OF HEALTH SCIENCES DEPARTMENT OF PHARMACY UNDERGRADUATE STUDIES' COURSES

COURSE DESCRIPTION:SEPARATION METHODS - ELECTROANALYTICAL TECHNIQUESCOURSE CODE:PHA-C21-NEW

SEPARATION METHODS - ELECTROANALYTICAL TECHNIQUES COURSE DESCRIPTION

1. GENERAL

SCHOOL	HEALTH SCIENCES			
SEPARTMENT	PHARMACY			
LEVEL OF COURSE	UNDERGRADUATE			
COURSE CODE	PHA-C21-NEW SEMESTER OF STUDIES		6th	
COURSE TITLE	SEPARATION METHODS - ELECTROANALYTICAL TECHNIQUES			
INDEPENDENT TEACHING ACTIVITIES		TEACHING HOURS PER WEEK	ECTS CREDITS	
Lectures		ires	4	6
Laboratory practice		3	b	
COURSE TYPE	Scientific Field course			
PREREQUISITE COURSES:	-			
TEACHING AND ASSESSMENT LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Not offered			
COURSE WEBPAGE (URL)	http://www.pharmacy.upatras.gr/images/DS/PHA-C21-EN.pdf			

2. LEARNING OUTCOMES

Learning Outcomes

Student familiarizes himself with Electrochemical Instrumental Analysis Techniques and Separation Techniques with emphasis on the relevant analytical techniques used in Pharmacopoeia for the control of raw materials and excipients and formulations. Specifically upon successful completion of the course the student is expected to have developed level 6 skills in the following subjects:

- Ability to choose the proper separation technique for separating solvent mixtures. Identification and quantification of the individual components of a liquid or solid sample using a variety of chromatographic techniques with emphasis on pharmaceutical formulations and samples of biological interest.
- Ability to choose and use between potentiometric and voltammetric electro-analytical techniques for the identification and quantification of ions as well as pharmaceutically active compounds in preparations and samples of biological interest.

General Abilities

- 1. Data analysis using the necessary technologies
- 2. Independent work
- 3. Group work

3. COURSE CONTENT

Lectures

Separation Techniques:

- 1. Extraction methods, countercurrent extraction
- 2. Liquid chromatography, theory of chromatography, mechanism of retention. Chromatography of partition, adsorption, ion exchange, affinity, exclusion, chiral. Instrumentation with emphasis to detectors. Applications on pharmaceutical analysis problems
- 3. Supercritical chromatography
- 4. Gas chromatography

Electrochemical and Bioelectrochemical methods of analysis:

- 1. Potentiometry: Ion selective and enzyme electrodes
- 2. Conductivity techniques
- 3. Amperometric techniques
- 4. Voltammetry with emphasis on Polarographic techniques and cyclic voltammetry

Laboratory Exercises

- Potensiometry: Quantitative determination of the active pharmaceutical ingredient «acetylsalicylic acid» in «Aspirin[®]» tablets.
- Potensiometry: Quantitative determination of the admixture (Cl-) in active pharmaceutical ingredient «Chlorothiazide».
- Voltammetry: Quantitative determination of the active pharmaceutical ingredient «Diazepam» with Differential Pulse Polarimetry.
- Ion Exchange: Determination of the NaCl concentration in saline.
- High Performance Liquid Chromatography: Separation and quantitative determination of the active ingredients of «Panadol Extra®» tablet.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

Teaching method	In class and laboratory on hands training		
Use of information and communication technologies	Learning using e-class platform, Software for data acquisition, software for data processing		
Teaching organization	Teaching Method Lectures Practical Lab Exercises Group class for data processing and lab reports Autonomous study Total number of hours for the Course	<i>Semester Workload</i> 52 14 20 64	
	(25 hours of work-load per ECTS credit)	150	

STUDENT ASSESSMENT	 I. Final written examination (50%) including: Questions of brief development Questions for judgement Problem solving.
	 II. Laboratory exercises (50%) including. - Lab experiments - Group report on each experiment (data processing, discussion of results) - Written exam

5. RECOMMENDED LITERATURE

Suggested Books:

- 1. Instrumental Analysis, Th. P. Chatzioannou and M. Koupparis , Athens 2014 (in Greek)
- 2. Instrumental Chemical Analysis, I. Papadogiannis and B. Samanidou, 2nd Ed. Thessaloniki, 2011 (in Greek).
- 3. Pharmaceutical Analysis, D.G. WATSON, Parisianos, 2011 (Translated in Greek by M. Koupparis et. al).
- 4. Principles of Instrumental Analysis, D. A. Skoog, F. James Holler, S. R. Crouch, Kostarakis, 2016 (Translated in Greek by M. Karagiannis and K. Eustathiou)